N-domain-specific substrate and C-domain inhibitors of angiotensin-converting enzyme: angiotensin-(1-7) and keto-ACE.

نویسندگان

  • P A Deddish
  • B Marcic
  • H L Jackman
  • H Z Wang
  • R A Skidgel
  • E G Erdös
چکیده

We used the isolated N- and C-domains of the angiotensin 1-converting enzyme (N-ACE and C-ACE; ACE; kininase II) to investigate the hydrolysis of the active 1-7 derivative of angiotensin (Ang) II and inhibition by 5-S-5-benzamido-4-oxo-6-phenylhexanoyl-L-proline (keto-ACE). Ang-(1-7) is both a substrate and an inhibitor; it is cleaved by N-ACE at approximately one half the rate of bradykinin but negligibly by C-ACE. It inhibits C-ACE, however, at an order of magnitude lower concentration than N-ACE; the IC50 of C-ACE with 100 micromol/L Ang I substrate was 1.2 micromol/L and the Ki was 0.13. While searching for a specific inhibitor of a single active site of ACE, we found that keto-ACE inhibited bradykinin and Ang I hydrolysis by C-ACE in approximately a 38- to 47-times lower concentration than by N-ACE; IC50 values with C-ACE were 0.5 and 0.04 micromol/L. Furthermore, we investigated how Ang-(1-7) acts via bradykinin and the involvement of its B2 receptor. Ang-(1-7) was ineffective directly on the human bradykinin B2 receptor transfected and expressed in Chinese hamster ovary cells. However, Ang-(1-7) potentiated arachidonic acid release by an ACE-resistant bradykinin analogue (1 micromol/L), acting on the B2 receptor when the cells were cotransfected with cDNAs of both B2 receptor and ACE and the proteins were expressed on the plasma membrane of Chinese hamster ovary cells. Thus like other ACE inhibitors, Ang-(1-7) can potentiate the actions of a ligand of the B2 receptor indirectly by binding to the active site of ACE and independent of blocking ligand hydrolysis. This potentiation of kinins at the receptor level can explain some of the well-documented kininlike actions of Ang-(1-7).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory Effects of Germinal Angiotensin Converting Enzyme by Medicinal Plants Used in Iranian Traditional Medicine as Antihypertensive

Background & Aim: Medicinal plants are used in traditional medicine for the treatment of different diseases such as hypertension. Since inhibition of angiotensin converting enzyme (ACE) is one of the involved mechanisms in control of hypertension, in this study the inhibitory effect of 20 medicinal plants on ACE was investigated. Methods: The medicinal plants were collected, powdered, extracted...

متن کامل

Substrate dependence of angiotensin I-converting enzyme inhibition: captopril displays a partial selectivity for inhibition of N-acetyl-seryl-aspartyl-lysyl-proline hydrolysis compared with that of angiotensin I.

Angiotensin I-converting enzyme (ACE) is composed of two highly similar domains (referred to here as the N and C domains) that play a central role in blood pressure regulation; ACE inhibitors are widely used in the treatment of hypertension. However, the negative regulator of hematopoiesis, N-acetyl-seryl-aspartyl-lysyl-prolyl (AcSDKP), is a specific substrate of the N domain-active site; thus,...

متن کامل

Fragment-based design for the development of N-domain-selective angiotensin-1-converting enzyme inhibitors

ACE (angiotensin-1-converting enzyme) is a zinc metallopeptidase that plays a prominent role in blood pressure regulation and electrolyte homeostasis. ACE consists of two homologous domains that despite similarities of sequence and topology display differences in substrate processing and inhibitor binding. The design of inhibitors that selectively inhibit the N-domain (N-selective) could be use...

متن کامل

In vitro and in vivo inhibition of the 2 active sites of ACE by omapatrilat, a vasopeptidase inhibitor.

The vasopeptidase inhibitor omapatrilat inhibits both neutral endopeptidase and angiotensin-converting enzyme (ACE). The in vitro and in vivo inhibitory potency of omapatrilat and the specific ACE inhibitor fosinopril toward the 2 active sites of ACE (called N- and C-domains) was investigated with the use of 3 substrates: angiotensin I, which is equally cleaved by the 2 ACE domains; hippuryl-hi...

متن کامل

Development of domain-selective angiotensin I-converting enzyme inhibitors.

Somatic angiotensin-converting enzyme (ACE) is an essential component of the renin-angiotensin system and consequently plays a key role in blood pressure and electrolyte homeostasis. Thus, ACE inhibitors are widely used in the treatment of cardiovascular disease, causing a decrease in the production of angiotensin II and an increase in the circulating vasodilator bradykinin. The ectodomain of A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 31 4  شماره 

صفحات  -

تاریخ انتشار 1998